p PRECISION
 INSTRUMENTS

User Manual

* Extremely Accurate $\frac{\text { Features and Benefits }}{\boldsymbol{A}}$ Accurate within 2% of reading from 20% of
full scale to full scale. Guaranteed against defect in workmanship and full scale to full scale. Guaranteed against defect in workmanship and
materials for one year from the date of delivery providing that they have been used according to instructions.
* Exclusive Torsion Bar Design \bullet This patented design features a
connecting arm directly from the square drive to the easy-to-read dial. connecting arm directly from the square drive to the easy-to-read dial.
This enables the user to read the actual twist of the square drive. And,
since a lever principle isn't used, hand-hold position is not criticical.
since a lever principle isn't used, hand-hold position is not critical
unlike the split or bending beam competitive torque wrenches.
\star Compact Design and Tapered Nose \bullet This provides ease-of-
\star operation by allownger Dials \bullet Protected by dial "guards" the
* Large hock Resistant dials ears-toread dial numbers are set off against a dant contrasting ", the large many increments on thes scale, getuess work is a coniminatiated.
\star Dial Pointers \uparrow Work in either right or left-hand directio
can also be rotated so the user can torque to zero from the desired
value
$\star \begin{aligned} & \text { value. } \\ & \text { Memory Needle Models } \bullet \text { Retain the highest torque reading for easy } \\ & \text { reference. For Quality Control testing, a Memory Needle Model }\end{aligned}$ reference. For Quality Control testing, a Menory Needie Model
dipplays the maximum reading obtained. This is excellent for verifying \star Indicator Light Models \bullet Indic
achieved. Set the dial to the required torque a prese torque level is
when the proper torque is reached. This is particularly useful when th
dial is not visible.
Shock-Resitant Dial Mechanism
\# Shock-Resistant Dial Mechanism \bullet Built to withstand rough usage,
the mechanism which provides the expanded dial readings is shock protected with resilient and overload members.
\star Consistent Readings \bullet The accuracy is not affected by the way it is
held. Pull on the end of the handle or close to the dial and the reading remains the same. Handle extensions are furnished with many models
Compact \bullet The square drive is located at the very end of the torque
wrench so that it can be used in areas where space is at a minimum.
wrencc so that it can be used in areas where space is at a minimum.
\star Friction-Free $\mathbf{O p e r a t i o n} * A$ floating connecting beam between the太 Friction-Free Operation *A floating connecting beam between the
torque measuring element and the dial mechanism has no bearing points and consequently there is no friction drag. This floating beam
the etorque wrench practically friction-free.
* Accurate and Dependable All Precisio
* Accurate and Dependable \bullet All l Precicion Instrument D Torque
wrench Series meets or exceeds wrench Series meets or exceeds all applicable requirements of
ANSI / ASME B107.14M, GGG-W-00686C, BS6073: 1988, ISO6789.

O GET ACCURATE TORQUE READINGS Your torque wrench is a precision instrument. Given proper care it will give
many years of satisfactory use. For best results and accurate readings follow he instructions given below.
. Set the dial of the Torque wrench by using method "A" or "B" explained below. Method A: 1) Turn the dial until the pointer is on zero. 2) Place the
Torque wrench on the fastener. 3) Pull until the pointer reaches the torque required. Method B: 1) Turn the dial until the pointer is at the torque
required. (On right hand threads set to the left of zero. On left hand threads
set to the right of zero.) 2) Place the Torque wrench on the fastener. 3) Pull set to the right of zero.) 2) Place the Torque wrench on the fastener. 3)
until the pointer reaches zero.
2. To make it easier to read the dial of all except the Memory Needle 2. To make it easier to read the dial of all except the Memory Needle
models, it is possible to place the pointer in any desired position. Turn the
dial until the pin bears against the pointer. Then turn the dial $1 / 4$ turn past models, it is possible to place the pointer in any
dial until the pin bears against the pointer. Then turn the dial $1 / 4$ turn past
ion ill follow the pin back until it reaches the position desired. Then proceed with either Method "A" or "B," as explained above. Tial unse the Indicator Light Model for clockwise applications, turn the and pull unt the light comes. . Check torque wrench on the fastene d pulf untir the light comes on. Check the bulb and battery if the light ails to light when the pointer touches the gold contact pin.
. To use the Memory Needle Model in the clockwise direction, rotate
 contacts main pointer. Next turn the dial bezel counter clockwise until the
Memory Needle is on zero. Place the Torque wrench on the fastener and
pull on the wrench handle until the desired torque is reached When the ull on the wrench handle until the desired torque is reached. When the eedle will remain at the peak torque reached. For counter clockwise rection use, reverse above procedure
The Memory Needle feature can be used to record peak torque when the
Torque wrench dial may not be visible. Be careful not to overtorque the
. Each time the Torgue wrench is used, be sure that the dial and pointer re set correctly.
. Atter each use of the Torque wrench make sure the pointer returns to
ero or the pre-set value. If not, re-set the dial and pull again. ero or the pre-set value. If not, re-set the dial and pull again.

1. For an accurate reading, the final turn of the nut should be made with the 8orque wrench.
2. The hub of the pointer contains a clutch which allows the stem to turn within the hub if a sudden impact occurs. This important safety factor rotects the dial mechanism from shock damage. If a fastener suddenly
Worke on fasteners with clean and lubricated threads
3. Your Torque wrench does not need lubrication. Do not attempt to oil it

Why Measure Torque

manufacturing efficiency. Because of this, manufacturrers hav expanded their production through special emphacis on sume specific "ps increased power per cubic inch,","power per dollar"" and
"product efficiency factor per pound." In researching the need for
increased product efficiency and the increased product efficiencecy and the i importancence of complyingn with
stringent safety standards, manufacturers found that the "nuts and stringent safety standards, manufacturers found that the "nuts and
bolts") principle needed special attention. Older products and machines were assembled using oversized parts having high satety factors and enormous strength. These assemblies required minimal attention, since
nuts and bolts were much larger than necessary. In order to increase nuts and bolts were much larger than necessary. In order to increase
product efficiency per pound, smaller, more efficient machinery had to "be produced using smaller yet stronger fasteners. Because of this, the

Threaded Fasteners

Threaded fasteners are used on all types of machinery, yet proper
attention is often neglected. Improper torque can cause enough distortion to fracture castings, accelerate wear or cause running parts to
seize. It is a known fact that a simple half-inch bolt may exert a force as seize. It is a known fact that a simple hali--nch bolt may exert a force a
high as 16,000 pounds-enough force to lift four or five automobiles. Quitite obviously, threaded fasteners requirire special attention. .eceause
of the importance nuts and bolts play in product efficiency, the Society of the importance nuts and bostrs play in producte tefficiencecy, the Socoiety
of Automotive Engineers has established standards of minimum tensile strength for all major classes of threaded fasteners used by industry. Actually, the minimum tensile strength is only potential, considering
practical usage. Because fasteners are used to hold assembly components together, stress caused by rapidly changing loads often complicates the fastener's job. For example, under stress the
investment in extra potential strength of an SAE rade five bolt is lost, investment in extra potential strength of an SAE grade five bolt is lost,
and the quality of the entire machine lessened, if it is not properly and the quality of the entire machine lessened, in it is not properiy
tightened. .oots not tightened properly may eventually loosen and fall
out. Even bolts secured with a locking devise, may fail from fatigue. out. Even bolts secured with a locking devise, may fail from fatigue.
When a bolt is properly tightened, extra locking devices are unnecessary. For its cost, the heat treated SAE Arade five bolt offers the
ureatest opential strenth greatest potential strength in standard production situations.
realize this potential, the bolt must be properly tightened.

$\underset{\text { A few standard Precautions }}{\text { A Few }}$

A few standard precautions will solve fastener problems. Since the
fastener is usually the weakest link in any assembly special attent always necessary. This means that an incorrectly tightened fastener will
fail before the machine itself tightening. is simple. First, examine the bolt itself to determine its tightening. is simple. First examine the boit iseef to determine its
torque limits. Then check its maximum potential. Naturally, there are circumstances which will determine procedures and torque value
special situations but these are rare. Caution! Always consult special situations but these are rare. Caution! Always consult
manufacturers specifications when available. The most commonly used
rule for deterning rule for determining proper torque for a fastener is to apply 70% of the
torque necessary to cause failure. The "Production Torque Guide" torque necessary to cause aalure. The Production Torque Guile
chart in this manual indicates these values. Tightening to utilize the fastener's potential striength is a neecessary. parto of the foastener story, but
it isn't the whole story. Proper lubrication, washers, etc. are just as important a s proper tithttening, since as much as 80% of the torque applied to a fastener is lost through friction. When the relationship
between torque and tension is out of control, reliability is out; therefore between torque and tension is out of control, reliability is out; therefore,
proper lubrication is necessary to provide a constant clamping force over a series of applications.
The best lubrication is a high stress type, such as "Never-Seez" Compound. On non-critical applications, seventy-two hour zinc phosphate and oil coating may be used. This is an inexpensive coating

CONVERSION OF VARIOUS UNITS OF TORQUE					
Convert			Convert		
From	To	Multiply	From	To	Multiply
lb.in.	oz.in.	16	oz.in.	lb.in.	. 0625
lb.in.	b.ft.	. 08333	lb.ft.	lb.in.	12
1b.in.	kg.cm.	1.1519	kg.cm.	1b.in.	. 8681
lb.in.	kg.m.	. 011519	kg.m.	lb.in.	86.81
1b.in.	$\mathrm{N} \cdot \mathrm{m}$. 133	$\mathrm{N} \cdot \mathrm{m}$	1b.in.	8.85
lb.in.	$\mathrm{dN} \cdot \mathrm{m}$	1.13	$\mathrm{dN} \cdot \mathrm{m}$	lb.in.	. 885
lb.ft.	kg.m.	1382	kg.m.	lb.ft.	7.236
lb.ft.	N•m	1.356	$\mathrm{N} \cdot \mathrm{m}$	lb.ft.	. 7376
$\mathrm{N} \cdot \mathrm{m}$	$\mathrm{dN} \cdot \mathrm{m}$	10	$\mathrm{dN} \cdot \mathrm{m}$	$\mathrm{N} \cdot \mathrm{m}$. 10
$\mathrm{N} \cdot \mathrm{m}$	kg.cm.	10.2	kg.cm.	N•m	. 09807
$\mathrm{N} \cdot \mathrm{m}$	kg.m.	. 102	kg.m.	$\mathrm{N} \cdot \mathrm{m}$	9.807

and is furnished on many industrial fasteners direct from the
manufacturer. manufacturer.
Also, the surface under the head of the bolt or under the nut
(whichever is the turned member) is important. Many manu (whichever is the turned member) is important. Many manufacturers
use hard flat washers with no spring effect. The hardness contributes use hard correlathers with no spring effect. The hardness contribu achieved. The unbrokenc circulara flatness contributes to dimensional
control and consistency of clamping force from bolt to bolt. Locking devices offer some protection against improper tightening. One of
the latest trends is the use of nuts with physical disrupted threads to insure fastener locking. This type of device is manufactured by
several companies, but should be examined for it's own merits. several companies, but should be examined or its swn merits.
(Remember, however, that galling can disupt the torque-tension
correlation when locking devices are used.)

HOW TO COMPUTE TORQUE WHEN USING ADAPTORS If an adaptor or extension is attached to the square drive of a click-typ torque wrench and this adds to its length, then the applied torque will
be greater than the pre-set torque. A formula can be used to find what he preset-set torque should be in order to obtain the correct applied
morque.
Here is the formula
Dial Reading Torque Wrench Pull Point x Torque Desired
$\underset{\text { Pre-Set Torque }}{\text { or }}=\overline{\text { Torque Wrench Pull Point }+ \text { Extension Length }}$

This becomes: $R S=\frac{A \times T}{A+B}$ when
$\mathbf{R S}=$ Dial reading or torque setting of the wrench.
$\mathbf{A}=$ Distance from the center of the suare drive of
A = Distance from the center of the square drive of the torque wrench to
the center of the handle grip pull point. he center of the handle grip pull point.
$\mathbf{B}=$ Length of the adaptor from the center of the square drive to the center of the nut or bolt. Use only the length which is parallel to the
handle. See fiuure 1 handle. See figure 1 . This is the actual torque applied to the fastener Here is a typical problem: What should
12 ", " B " 6 " and " T " is 30 西. ft.
$R S=\frac{A \times T}{A+B}$ or $\frac{12 \times 30}{12+6}$ or $\frac{360}{18}$ or 20 pound foot
 "RS" is 20 pound foot.
Note: If the torque $w r$. T, reads in pound foot, then " T ", should also be in pound foot. " T " and " "RS" should be in the same unit of
measurement. " A " and " B " should also be the same unit of
neasurement.

Figure 1 - Formula values for a Torque wrench

The wrench is shipped with the main pointer lined up on the zero mark and pointing straight forward.

If the main pointer ever comes to rest at an angle other than straight forward, hold the outer dial ring with your index finer and thumb...

And turn the outer dial ring to line up the main pointer with the zero mark. Note: This will not affect the calibration of the tool.
in1247 10/07

The wrench is shipped with the main pointer lined up on the zero mark and pointing straight forward.

If the main pointer ever comes to rest at an angle other than straight forward, hold the outer dial ring with your index finer and thumb...

And turn the outer dial ring to line up the main pointer with the zero mark. Note: This will not affect the calibration of the tool.
in 1247 10/07

The wrench is shipped with the main pointer lined up on the zero mark and pointing straight forward.

If the main pointer ever comes to rest at an angle other than straight forward, hold the outer dial ring with your index finer and thumb...

And turn the outer dial ring to line up the main pointer with the zero mark. Note: This will not affect the calibration of the tool.
IN1247 10/07

The wrench is shipped with the main pointer lined up on the zero mark and pointing straight forward.

If the main pointer ever comes to rest at an angle other than straight forward, hold the outer dial ring with your index finer and thumb...

And turn the outer dial ring to line up the main pointer with the zero mark. Note: This will not affect the calibration of the tool.

[^0]
[^0]: N 1247 10/07

