२ PRECISION

INSTRUMENTS

User Manual

Micrometer Style Torque Wrench

atures and Benefits

1. Improved accuracy $\pm 3 \%$ of wrench setting. Meets or exceeds ANSI/ ASME B107. 14 m 2. PATENTED Clockwise / Counter Clockwise operation with internal balance cam to provide the same accuracy in either direction.
PATENTED internal basic Calibration adjustment allows all calibration of instrument to be performed without disassembly.
PATENTED roller plunger reduces highest firicion area by as much as 90%
2. Positive stops at both bottom and full scale prevents "OVER STRESSING" of internal mechanism.
3. PATENT PEN
4. PATENT PENDING Precision Instruments pear shaped ratcheet for strength and easy access to hard to reach fasteners. The Precision Instruments $@$ Sealed Ratchet seals in permanent oil-graphite lubrication and seals out damaging dust, dirt and moisture. 8. ALL steel construction for strength and durability. No plastic to break or wear out. NO CADMIUM or MERCURY used.
5. PATENTED "torque release rolle"" calibration adjustment retains accuracy after passing "GGG" drop test.
6. Nickel-chrome plating for easy clean up and appearance
7. PATENTED full torgue rease

PATENTED Hiltorque release roller allows viritual friction free click and release even at low torque setings.

Safety warnings and cautions

1. CAUTION

Torque Wrenches
Overtquing can cause breakage. Wrench can be damaged while breaking fasteners loose. Force against flex stops on flex head torque wrenches can cause head breakage. An out of calibration torque wrench can cause part or tool breakage.

1. CAUTION

Do not exceed rated torque. Do not use a torque wrench to break fasteners loose.

1. CAUTION
2. CAUTION

Periodic recalibration is necessary to maintain accuracy.
$1 . \frac{\text { CAUTION }}{\text { Broken }}$

Click-Type Torque Wrenches

To Set the Desired Torque:
Unlock the torque wrench setting by pulling the lock ring toward the unlock the torque wrench.
2. The desired torque can be set by turning to the number indicated on
the barrel. Line up the zero on the sleeve with the center line on the the barrel. Line up the zero on the sleeve with the center line on the barrel (See figure 1). Then add the reading obtained by turning the
sleeve clockwise. (See figure 2). Always approach the desired value
from a lower setting:
Lock the torque setting by pushing the lock ring toward the ratchet, as
shown by the description on the retaining ring. The torque wrench is shown by the desci
then ready for use.

Correct Use of the Torque Wrench
The correct amount of torque has been applied when the wrench reealease action will include an audible signal with all but small capacity release action will include an audible signal with all but small capacity
models or at lowest settings. The movement indicates that the selected orque has been reached. The torque wrench can be used for either a clockwise or counter-clockwise application.
A Few Suggestions:

1. If the torgue wrench
If the torque wrench has not been used for some time, operate it sev2. To assure to an accurate torque application keep your hand centered on To assure an accurate torque appication keep your hand centered on
the handle grip, apply slow steady force until wrench releases, stop applying force and allow wrench to reset.
2. Don't forcibly unscrew the handle grip below the lowest torque reading. tion. This could damage the locking device. tion. This could damage the locking device.
Do not apply more torque than the rated capacity of the torque wrench. 6. Always store the torque wrench with the torque setting in the lowest
position.

N1203-PI
Precision Instruments, Inc.
Printed in U.S.A

Why Measure Torque

Modern consumer demand has forced industry to upgrade manufacturing efficiency. Because of this, manufacturers have expanded their production through special emphasis on such specifics as increased power per cubic inch," "power per dollar" and "product product efficiency and the importance of complying with stringent safety standards, manufacturers found that the "nuts and bolts" principle needed special attention. Older products and machines were assembled using oversized parts having high safety factors and enormous strength. These assemblies required minimal attention, since nuts and bolts were much larger than necessary. In order to increase product efficiency per pound, smaller, more efficient machinery had to be produced using smaller yet stronger fasteners. Because of this, the "nuts and bolts" principles have new importance.

Threaded Fasteners

Threaded fasteners are used on all types of machinery, yet proper attention is often neglected. Improper torque can cause enough parts to seize. It is a known fact that a simple half-inch bolt may exert a force as high as 16,000 pounds-enough force to lift four or five automobiles. Quite obviously, threaded fasteners require special attention. Because of the importance nuts and bolts play in product efficiency, the Society of Automotive Engineers has established standards of minimum tensile strength for all major classes of threaded fasteners used by industry. Actually, the minimum tensile strength is only potential, considering practical usage. Because fas teners are used to hold assembly components together, stress caused by rapidly changing loads often complicates the fastener's strength of an SAE grade five bolt is lost and the quality of the entir machine lessened if it is not properly tightened. Bolts not tightened machine lessened, if it is not properly tightened. Botts not tightened a locking devise, may fail from fatigue. When a bolt is properly tightened, extra locking devices are unnecessary. For its cost, the heat treated SAE grade five bolt offers the greatest potential strength in standard production situations. But, to realize this potential, the bolt must be properly tightened.

A Few Standard Precautions

A few standard precautions will help solve fastener problems. Since the fastener is usually the weakest link in any assembly, special attention is always necessary. This means that an incorrectly tightened proper bolt tightening is simple. First, examine the bolt itself to determine its torque limits. Then check its maximum potential. Naturally, there are circumstances which will determine procedures and torque value for special situations but these are rare. Caution! Always consult manufacturers specifications when available. The most com apply 70% of the torque necessary to cause failure. The "Production Torque Guide" chart in this manual indicates these values. Tightening to utilize the fastener's potential strength is a necessary part of the fastener story, but it isn't the whole story. Proper lubrication, washers, etc. are just as important as proper tightening, since as much as 80%
of the torque applied to a fastener is lost through friction. When the relationship between torque and tension is out of control, reliability is out; therefore, proper lubrication is necessary to provide a constant clamping force over a series of applications.
The best lubrication is a high stress type, such as "Never-Seez" phate and oil coating may be used. This is an inexpensive coating
and is furnished on many industrial fasteners direct from the manuacturer. Also, the surface under the head of the bolt or under the nut
whichever is the ers use hard flat washers with no is important. Many manufactur contributes to good correlation between the torque applied and the tension achieved. The unbroken circular flatness contributes to dimensional control and consistency of clamping force from boit to bolt. Locking devices offer some protection against improper tight-
ening. One of the latest trends is the use of nuts with physical disrupted threads to insure fastener locking. This type of device is manufactured by several companies, but should be examined for it's own merits. (Remember, however, that galling can disrupt the

HOW TO COMPUTE TORQUE WHEN USING ADAPTORS
If an adaptor or extension is attached to the square drive of a torque wrench and this adds to its length, then the applied torque will be greater than the pre-set torque. A formula can be used to find what torque.

Pre-Set Torque $=$ Torque Wrench Pull Point x Torque Desired Pre-Set Torque $=$ Torque Wrench Pull Point + Extension Length RS = Torque setting of the torque wrench

This becomes: $R S=\frac{A \times T}{A+B}$ when
A = Distance from the center of the square drive of the torque wrench to the center of the handle grip pull point.
ar dive the enter of the nut or bolt. Use only the length which is parallel to the $\mathrm{T}=$ Torque desired. This is the actual torque applied to the fastener Here is a typical problem: What should the setting be when " A " is

$$
\Delta v T \longrightarrow
$$

$$
R S=\frac{A \times T}{A+B} \text { or } \frac{12 \times 30}{12+6} \text { or } \frac{360}{18} \text { or } 20 \text { pound foot }
$$

Therefore 30 pound foot of Torque will be applied at the fastener when "RS" is 20 pound foot
Note: If the torque wrench reads in pound foot, then " T " should also be in pound toot. " "and "RS" should be in the same unit of meas-
urement. "A" and " B " should also be the same unit of measurement.

Figure 3

Precision Instruments, Inc.	Sales (toll free):
1846 Miner Street	866-TWRENCH
P	$(866-897-3624)$

Fax: 847-824-7629
E-mail us at: sales@torqwrench.com
Visit us at: www.torqwrench.com

If Your Torque Wrench Needs Repair

1. Send it to an authorized Precision Instruments Service Center, or give it to your
repair $i t$ yourself.
repair it yourrelf.
2. If the warranty is no longer in effect, your Precision Instruments Customer Service Representative will contact you with repair
charges for your approval before being repaired. charges for your approval before being repaired.
3. A series of testers are available from Precision Sales for checking the accuracy of your Torque Wrench. See your
Precision Sales representative for more information.

GENERAL TORQUE SPECIFICATION CHART FOR I.FI..* METRIC FASTENERS** (when SAE10 oil is used as a lubricant)															
Minimum Strength	sile ${ }^{* * *}$	400	420	520	830	900	1040	1220							
Proff Load		225	310	380	600	650	830	970							
Prope	Class	4.6	4.8	5.8	8.8	9.8	10.9	12.9							
Bolt D	neter	Torque: Newton Metre													
metric	inch														
5 mm	0.197	2.9	4	5	-	8	11	12							
6 mm	0.236	5	7	8	-	14	18	21							
7 mm	0.276	8	11	14	-	24	30	35							
8 mm	0.315	12	16	20	.	34	44	50							
10 mm	0.394	23	32	40	.	70	85	100							
12 mm	0.472	40	56	70	.	120	150	180							
14 mm	0.551	65	90	110	.	190	240	280							
16 mm	0.63	100	140	170	270	290	380	440							
20 mm	0.787	200	-	330	520	-	740	860							
24 mm	0.945	340	-	580	920	1260	1480	-							
${ }^{* * *}$ Megapascal *Note: Use only when man based on 90% of proof load. *I.F.I. $=$ Industrial fasteners Institute. ble, these values are for stiff metal-to-metal joints and are DO NOT USE for gaskets joints or joints of soft materials.															

*.F.I. $=$ Industrial tasteneras Institue.

Caution

Always use manufacturers specifications when available. These specifications are approximate and may not be appropriate for some applications. No liability is assumed for errors which may result from the use of any of these specifications.

Setting the Precision Instruments M-Line Click-Type Torque Wrench

Hold the ratchet head or neck of the tool in one hand and grab the handle with the other.

Pull down on the lock ring. This will unlock the adjustment setting.

Twist the handle to the desired torque setting.

Use your thumb and index finger to push the lock ring back up. This will lock the adjustment setting.

1N12499/07

२ PRECISION INSTRUMENTS

Setting the Precision Instruments M-Line Click-Type Torque Wrench

Hold the ratchet head or neck of the tool in one hand and grab the handle with the other.

Pull down on the lock ring. This will unlock the adjustment setting.

Twist the handle to the desired torque setting.

Use your thumb and index finger to push the lock ring back up. This will lock the adjustment setting.

IN1249 9/07

? PRECISION
 INSTRUMENTS

Setting the Precision Instruments M-Line Click-Type Torque Wrench

Hold the ratchet head or neck of the tool in one hand and grab the handle with the other.

Pull down on the lock ring. This will unlock the adjustment setting.

Twist the handle to the desired torque setting.

Use your thumb and index finger to push the lock ring back up. This will lock the adjustment setting.

1N12499/07

) PRECISION INSTRUMENTS

Setting the Precision Instruments M-Line Click-Type Torque Wrench

Hold the ratchet head or neck of the tool in one hand and grab the handle with the other.

Pull down on the lock ring. This will unlock the adjustment setting.

Twist the handle to the desired torque setting.

Use your thumb and index finger to push the lock ring back up. This will lock the adjustment setting.

IN1249 9/07

